31 resultados para biologically active compounds

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumour promoting phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) exert a multitude of biological effects on many cellular systems, many of which are believed to be mediated via the activation of the enzyme protein kinase C (PKC). TPA and other biologically active phorbol esters inhibited the proliferation of the A549 human lung carcinoma cell line. However, after 5-6 days culture in the continued presence of the phorbol ester cells began to proliferate at a rate similar to that of untreated cells. Resistance to TPA was lost following subculturing, although subculture in the presence of 10 nM TPA for more than 9 weeks resulted in a more resistant phenotype. The selection of a TPA-resistant subpopulation was not responsible for the observed resistance. The antiproliferative properties of other PKC activators were investigated. Mezerein induced the same antiproliferative effects as TPA but synthetic diacylglycerols (DAGs), the presumed physiological ligands of PKC, exerted only a non-specific cytotoxic influence on growth. Bryostatins 1 and 2 were able to induce transient growth arrest of A549 cells in a manner similar to phorbol esters at nanomolar concentrations, but at higher concentrations blocked both their own antiproliferative action and also that of phorbol esters and mezerein. Fourteen compounds synthesized to mimic features of the phorbol ester pharmacophore and/or DAGs did not mimic the antiproliferative properties of TPA in A549 cells and exerted only a DAG-like non-specific cytotoxicity at high concentrations. The subcellular distribution and activity of PKC was determined following partial purification by non-denaturing polyacrylamide gel electrophoresis. Treatment with TPA, mezerein or bryostatins resulted in a concentration-dependent shift of PKC activity from the cytosol to cellular membranes within 30 min. Significant translocation was not observed on treatment with DAGs. Chronic exposure of cells to TPA caused a time- and concentration dependent down-regulation of functional PKC activity. A complete loss of PKC activity was also observed on treatment with growth-inhibitory concentrations of bryostatins. No PKC activity was detected in cells resistant to the growth-inhibitory influence of TPA. Measurement of intracellular Ca2+ concentrations using A549 cells cultured on Cytodex 1 microcarrier beads revealed that TPA, mezerein and the bryostatins induced a similar rapid rise in intracellular Ca2+ levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Psoriasis is characterised by epidermal proliferation and inflammation resulting in the appearance of elevated erythematous plaques. The ratio of c~AMP/c~GMP is decreased in psoriatic skin and when the epidermal cell surface receptors are stimulated by β-adrenergic agonists, intracellular ATP is transformed into c-AMP, thus restoring the c~AMP/c~GMP levels. This thesis describes a series of β-adrenoceptor agonists for topical delivery based upon the soft-drug approach. Soft drugs are defined as biologically active, therapeutically useful chemical compounds (drugs) characterised by a predictable and controllable In vivo destruction (metabolism) to non-toxic moieties. after they achieve their therapeutic role, The N-substituent can accommodate a broad range of structures and here the alkoxycarbonylethyl group has been used to provide metabolic susceptability. The increased polarity of the dihydroxy acid, expected after metabolic conversion of the soft~drug, ethyl N-[2'-(3',4'-dihydroxyphenyl)-2'-hydroxyethyl]-3- aminopropionate, should eliminate agonist activity. Further. to prevent oxidation and enhance topical delivery, the catechol hydroxyl groups have been esterified to produce a pro-soft-drug which generates the soft-drug in enzymic systems. The chemical hydrolysis of the pro-soft-drug proceeded via the formation of the dlpivaloyloxy acid and it failed to generate the active dihydroxy ester soft-drug. In contrast, in the presence of porcine liver carboxyesterase, the hydrolysis of the pro-soft drug proceeded via the formation of the required active soft-drug. This compound, thus, has the appropnate kinetic features to enable it to be evaluated further as a drug for the treatment of psoriasis. The pH rate-profile for the hydrolysis of soft-drug indicated a maximum stability at pH ∼ 4.0. The individual rate constants for the degradation and the pKa were analysed by nonlinear regression. The pKa of 7.40 is in excellent agreement with that determined by direct titration (7.43) and indicates that satisfactory convergence was achieved. The soft-drug was poorly transported across a silicone membrane; it was also air-sensitive due to oxidation of the catechol group. The transport of the pro-soft-drug was more efficient and, over the donor pH range 3-8, increased with pH. At lower values, the largely protonated species was not transported. However, above pH 7. chemical degradation was rapid so that a donor pH of 5-6 was optimum. The β-adrenergic agonist activity of these compounds was tested in vitro by measuring chronotropic and inotropic responses in the guinea pig atria and relaxation of guinea pig trachea precontracted with acetylcholine (10-3 M). The soft~drug was a full agonist on the tracheal preparation but was less potent than isoprenaline. Responses of the soft~drug were competitively antagonised by propranolol (10-6 M). The soft~drug produced an increase in force and rate of the isolated atrial preparatIon. The propyl analogue was equally potent with ED50 of 6.52 x 10-7 M. In contrast, at equivalent doses, the dihydroxy acid showed no activity; only a marginal effect was observed on the tracheal preparation. For the pro~soft-drug, responses were of slow onset, in both preparations, with a slowly developing relaxatlon of the tracheal preparatlon at high concentrations (10-5 M). This is consistent with in vitro results where the dipivaloyl groups are hydrolysed more readily than the ethyl ester to gIve the active soft-drug. These results confirm the validity tif the pro-soft-drug approach to the deUvery of β-adrenoceptor agonists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystal X-ray structure determinations are reported for eleven compounds all of which are either biologically active or potentially biologically important. The compounds fall into two distinct classes:- 1. Substituted diaminopyrimidines 2. Substituted aminopyrimidinones The first class of compounds were all selected on the basis of their common diaminopyrimidine nucleus which has been demonstrated to be a vital requirement for antifolate activity. They may all be described as non-classical or small molecule lipophilic dihydrofolate reductase (DHFR) inhibitors, as opposed to the classical folate analogues, having the ability to cross the blood-brain barrier, enter cells via a rapid passive diffusion process, and achieve high intracellular concentrations. Thus they are an excellent choice in the search for crystallography in the solid state, providing geometrical and distance data not available from any other analytical techniques to date; supporting and enhancing data obtained in the lower resolution studies of protein crystallography. The biological importance of these compounds is discussed and an attempt is made to relate/predict their pharmacological activity to observed structural features in the crystalline environment. Special attention is focussed on hydrogen bonding, confirmational flexibility and hydrophobicity of substituents; each of which appear to make contributions to tight binding in the enzyme active site. Chapter 9 describes the use of data from the literature and the solid state modelling of an observed enzyme-substrate interaction in an attempt to define it more accurately in terms of its geometric flexibility. Of the second class, one compound (ABPP) is reported; studies in two different crystal forms. In demonstrating both antiviral and high interferon inducing activity it is possible that this compound could be useful against cancer and also viral infections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. Areas covered: This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. Expert opinion: SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuberculosis (TB), an infection caused by human pathogen Mycobacterium tuberculosis, continues to kill millions each year and is as prevalent as it was in the pre-antimicrobial era. With the emergence of continuously-evolving multi-drug resistant strains (MDR) and the implications of the HIV epidemic, it is crucial that new drugs with better efficacy and affordable cost are developed to treat TB. With this in mind, the first part of this thesis discusses the synthesis of libraries of derivatives of pyridine carboxamidrazones, along with cyclised (1,2,4-triazole and 1,2,4-oxadiazole) and fluorinated analogues. Microbiological screening against M. tuberculosis was carried out at the TAACF, NIAID and IDRI (USA). This confirmed the earlier findings that 2-pyridyl-substituted carboxamidrazones were more active than the 4-pyridyl-substituted carboxamidrazones. Another important observation was that upon cyclisation of these carboxamidrazones, a small number of the triazoles retained their activity while in most of the remaining compounds the activity was diminished. This might be attributed to the significant increase in logP value caused by cyclisation of these linear carboxamidrazones, resulting in high lipophilicity and decreased permeability. Another reason might be that the rigidity conferred upon the compound due to cyclisation, results in failure of the compound to fit into the active site of the putative target enzyme. In order to investigate the potential change to the compounds’ metabolism in the organism and/or host, the most active compounds were selected and a fluorine atom was introduced in the pyridine ring. The microbiological results shows a drastic improvement in the activity of the fluorinated carboxamidrazone amides as compared to their non fluorinated counterpart. This improvement in the activity could possibly be the result of the increased cell permeability caused by the fluorine. In a subsidiary strand, a selection of long-chain , -unsaturated carboxylic esters, -keto, -hydroxy carboxylic esters and -keto, -hydroxy carboxylic esters, structurally similar to mycolic acids, were synthesised. The microbiological data revealed that one of the open chain compound was active against the Mycobacterium tuberculosis H37Rv strain and some resistant isolates. The possible compound activity could be its potential to disrupt mycobacterial cell wall synthesis by interfering with the FAS-II pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is concerned with the development of hydrogels that adhere to skin and can be used for topical or trans dermal release of active compounds for therapeutic or cosmetic use. The suitability of a range of monomers and initiator systems for the production of skin adhesive hydro gels by photopolymerisation was explored and an approximate order of monomer reactivity in aqueous solution was determined. Most notably, the increased reactivity of N-vinyl pyrrolidone within an aqueous system, as compared to its low rate of polymerisation in organic solvents, was observed. The efficacy of a series of photoinitiator systems for the preparation of sheet hydrogels was investigated. Supplementary redox and thermal initiators were also examined. The most successful initiator system was found to be Irgacure 184, which is commonly used in commercial moving web production systems that employ photopolymerisation. The influence of ionic and non-ionic monomers, crosslinking systems, water and glycerol on the adhesive and dynamic mechanical behaviour of partially hydrated hydrogel systems was examined. The aim was to manipulate hydrogel behaviour to modify topical and transdermal delivery capability and investigated the possibility of using monomer combinations that would influence the release characteristics of gels by modifying their hydrophobic and ionic nature. The copolymerisation of neutral monomers (N-vinyl pyrrolidone, N,N-dimethyl acrylamide and N-acryloyl morpholine) with ionic monomers (2-acrylamido-2-methylpropane sulphonic acid; sodium salt, and the potassium salt of 3-sulphopropyl acrylate) formed the basis of the study. Release from fully and partially hydrated hydrogels was studied, using model compounds and a non-steroidal anti-inflammatory drug, Ibuprofen. Release followed a common 3-stage kinetic profile that includes an initial burst phase, a secondary phase of approximate first order release and a final stage of infinitesimally slow release such that the compound is effectively retained within the hydrogel. Use of partition coefficients, the pKa of the active and a knowledge of charge-based and polar interactions of polymer and drug were complementary in interpreting experimental results. In summary, drug ionisation, hydrogel composition and external release medium characteristics interact to influence release behaviour. The information generated provides the basis for the optimal design of hydrogels for specific dermal release applications and some understanding of the limitations of these systems for controlled release applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new technology of combinational chemistry has been introduced to pharmaceutical companies, improving and making more efficient the process of drug discovery. Automated combinatorial chemistry in the solution-phase has been used to prepare a large number of compounds of anti-cancer screening. A library of caffeic acid derivatives has been prepared by the Knoevenagel condensation of aldehyde and active methylene reagents. These products have been screened against two murine adenocarcinoma cell lines (MAC) which are generally refractive to standard cytotoxic agents. The target of anti-proliferative action was the 12- and 15-lipoxygenase enzymes upon which these tumour cell lines have been shown to be dependent for proliferation and metastasis. Compounds were compared to a standard lipoxygenase inhibitor and if found to be active anti-proliferative agents were tested for their general cytotoxicity and lipoxygenase inhibition. A solid-phase bound catalyst, piperazinomethyl polystyrene, was devised and prepared for the improved generation of Knoevenagel condensation products. This piperazinomethyl polystyrene was compared to the traditional liquid catalyst, piperidine, and was found to reduce the amount of by-products formed during reaction and had the advantage of easy removal from the reaction. 13C NMR has been used to determine the E/Z stereochemistry of Knoevenagel condensation products. Soluble polymers have been prepared containing different building blocks pendant to the polymer backbone. Aldehyde building blocks incorporated into the polymer structure have been subjected to the Knoevenagel condensation. Cleavage of the resultant pendant molecules has proved that soluble linear polymers have the potential to generate combinatorial mixtures of known composition for biological testing. Novel catechol derivatives have been prepared by traditional solution-phase chemistry with the intention of transferring their synthesis to a solid-phase support. Catechol derivatives prepared were found to be active inhibitors of lipoxygenase. Soluble linear supports for the preparation of these active compounds were designed and tested. The aim was to develop a support suitable for the automated synthesis of libraries of catechol derivatives for biological screening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work has used novel polymer design and fabrication technology to generate bead form polymer based systems, with variable, yet controlled release properties, specifically for the delivery of macromolecules, essentially peptides of therapeutic interest. The work involved investigation of the potential interaction between matrix ultrastructural morphology, in vitro release kinetics, bioactivity and immunoreactivity of selected macromolecules with limited hydrolytic stability, delivered from controlled release vehicles. The underlying principle involved photo-polymerisation of the monomer, hydroxyethyl methacrylate, around frozen ice crystals, leading to the production of a macroporous hydrophilic matrix. Bead form matrices were fabricated in controllable size ranges in the region of 100µm - 3mm in diameter. The initial stages of the project involved the study of how variables, delivery speed of the monomer and stirring speed of the non solvent, affectedthe formation of macroporous bead form matrices. From this an optimal bench system for bead production was developed. Careful selection of monomer, solvents, crosslinking agent and polymerisation conditions led to a variable but controllable distribution of pore sizes (0.5 - 4µm). Release of surrogate macromolecules, bovine serum albumin and FITC-linked dextrans, enabled factors relating to the size and solubility of the macromolecule on the rate of release to be studied. Incorporation of bioactive macromolecules allowed retained bioactivity to be determined (glucose oxidase and interleukin-2), whilst the release of insulin enabled determination of both bioactivity (using rat epididymal fat pad) and immunoreactivity (RIA). The work carried out has led to the generation of macroporous bead form matrices, fabricated from a tissue biocompatible hydrogel, capable of the sustained, controlled release of biologically active peptides, with potential use in the pharmaceutical and agrochemical industries.